Last updated: 2020-07-08
Checks: 7 0
Knit directory: Epilepsy19/
This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200706)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 856ddcf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/fig_go.nb.html
Ignored: analysis/fig_neun.nb.html
Ignored: analysis/fig_overview.nb.html
Ignored: analysis/fig_smart_seq.nb.html
Ignored: analysis/fig_summary.nb.html
Ignored: analysis/fig_type_distance.nb.html
Ignored: analysis/gene_testing.nb.html
Ignored: analysis/prep_alignment.nb.html
Ignored: cache/con_allen.rds
Ignored: cache/con_filt_cells.rds
Ignored: cache/con_filt_samples.rds
Ignored: cache/con_ss.rds
Ignored: cache/count_matrices.rds
Ignored: cache/p2s/
Ignored: output/
Untracked files:
Untracked: DESCRIPTION
Untracked: NAMESPACE
Untracked: R/
Untracked: analysis/prep_alignment.Rmd
Untracked: analysis/prep_filtration.Rmd
Untracked: code/
Untracked: gene_modules/
Untracked: man/
Untracked: metadata/
Unstaged changes:
Modified: Epilepsy19.Rproj
Modified: README.md
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fig_type_distance.Rmd
) and HTML (docs/fig_type_distance.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 5c8e634 | viktor_petukhov | 2020-07-08 | Fixed dates in fig_ notebooks |
Rmd | 2541c9b | viktor_petukhov | 2020-07-06 | Type difference notebook |
library(pagoda2)
library(conos)
library(parallel)
library(ggplot2)
library(pbapply)
library(tibble)
library(dplyr)
library(ggrastr)
library(cowplot)
library(readr)
devtools::load_all()
theme_set(theme_bw())
outPath <- function(...) OutputPath("fig_type_diff", ...)
con <- CachePath("con_filt_samples.rds") %>% read_rds()
sample_per_cell <- con$getDatasetPerCell()
annotation_by_level <- read_csv(MetadataPath("annotation.csv"))
annotation <- annotation_by_level %$% setNames(l4, cell) %>% .[names(sample_per_cell)]
all_types <- annotation_by_level %>% .[,2:ncol(.)] %>% unlist() %>% unique()
neuron_type_per_type <- ifelse(grepl("(L[2-6].+)|(Excitatory)", all_types), "Excitatory", "Inhibitory") %>%
setNames(all_types)
condition_per_sample <- ifelse(grepl("E", levels(sample_per_cell)), "epilepsy", "control") %>%
setNames(levels(sample_per_cell))
condition_per_cell <- condition_per_sample[sample_per_cell] %>% setNames(names(sample_per_cell))
plot_theme <- theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
div_fill_scale <- scale_fill_brewer(palette="Set2")
div_color_scale <- scale_color_brewer(palette="Set2")
Fig. 3a:
p_emb <- con$plotGraph(alpha=0.2, size=0.05, mark.groups=T, show.legend=F, groups=annotation,
raster=T, raster.dpi=150, font.size=4, shuffle.colors=F, show.labels=T) +
plot_theme + labs(x="UMAP 1", y="UMAP 2") #+ scale_color_manual(values=type_colors)
p_emb
cell_num_df <- table(Type=annotation, Sample=con$getDatasetPerCell()[names(annotation)]) %>%
as_tibble() %>%
mutate(NeuronType=neuron_type_per_type[Type],
Condition=condition_per_sample[Sample],
Frac=as.vector(n / table(sample_per_cell)[Sample]))
cell_num_dfs <- split(cell_num_df, cell_num_df$NeuronType)
p_cell_num_joint <- cowplot::plot_grid(
plotCellFracPerType(cell_num_dfs$Excitatory, y.max=30),
plotCellFracPerType(cell_num_dfs$Inhibitory, y.max=10) + theme(axis.title.y=element_blank()),
align="h", rel_widths=c(3, 4)
)
Warning: Removed 1 rows containing non-finite values (stat_boxplot).
Warning: Removed 1 rows containing missing values (position_beeswarm).
ggsave(outPath("cell_fraction.pdf"), p_cell_num_joint, width=8, height=4)
p_cell_num_joint
cm_merged <- con$getJointCountMatrix(raw=T) %>% Matrix::t()
od_genes <- conos:::getOdGenesUniformly(con$samples, 1000)
p2_merged <- Pagoda2$new(cm_merged)
98377 cells, 33681 genes; normalizing ... using plain model log scale ... done.
p2_merged$reductions$cm <- p2_merged$counts[, od_genes] # Avoid scaling variance
p2_merged$calculatePcaReduction(nPcs=100, maxit=1000, verbose=T, type="cm", use.odgenes=F)
running PCA all 1000 genes .... done
Average number of genes:
cm_bool <- drop0(cm_merged)
cm_bool@x[] <- 1
n_genes_per_cell <- colSums(cm_bool)
n_umis_per_cell <- colSums(cm_merged)
mean(n_genes_per_cell)
[1] 2205.956
cell_sim_df <- p2_merged$reductions$PCA %>%
prepareDiffStatDf(sample_per_cell, annotation, neuron.type.per.type=neuron_type_per_type,
condition.per.sample=condition_per_sample)
t_df <- tibble(Id=names(n_genes_per_cell), NGenes=n_genes_per_cell, NUMIs=n_umis_per_cell) %>%
mutate(S=as.character(sample_per_cell[Id]), Type=annotation[Id]) %>% select(-Id) %>%
group_by(S, Type) %>% summarise(NGenes=median(NGenes), NUMIs=median(NUMIs))
cell_sim_df %<>% left_join(t_df, by=c(S1="S", "Type"="Type")) %>%
rename(NGenes1=NGenes, NUMIs1=NUMIs) %>%
left_join(t_df, by=c(S2="S", Type="Type")) %>%
rename(NGenes2=NGenes, NUMIs2=NUMIs)
cell_sim_dfs <- cell_sim_df %>% filter(MinSize > 2) %>% split(.$NeuronType)
Coorelations to covariates:
plot_guide <- guide_legend(title="Neuron type", override.aes=list(size=2, alpha=1))
ggplot(cell_sim_df) +
geom_point(aes(x=MinSize, y=DiffStat, color=NeuronType, shape=NeuronType), size=1, alpha=0.75) +
ggrastr::theme_pdf(legend.pos=c(0, 0)) + div_color_scale +
guides(color=plot_guide, shape=plot_guide) +
labs(x="Cluster size", y="Similarity stat") +
scale_x_log10()
Warning: Duplicated override.aes is ignored.
ggsave(outPath("similarity_vs_cluster_size.pdf"), width=6, height=3)
Warning: Duplicated override.aes is ignored.
ggplot(cell_sim_df) +
geom_point(aes(x=pmin(NGenes1, NGenes2), y=DiffStat, color=NeuronType, shape=NeuronType), size=1, alpha=0.75) +
ggrastr::theme_pdf(legend.pos=c(0, 0)) + div_color_scale +
guides(color=plot_guide, shape=plot_guide) +
labs(x="Number of genes", y="Similarity stat")
Warning: Duplicated override.aes is ignored.
ggsave(outPath("similarity_vs_n_genes.pdf"), width=6, height=3)
Warning: Duplicated override.aes is ignored.
ggplot(cell_sim_df) +
geom_point(aes(x=pmin(NUMIs1, NUMIs2), y=DiffStat, color=NeuronType, shape=NeuronType), size=1, alpha=0.75) +
ggrastr::theme_pdf(legend.pos=c(0, 0)) + div_color_scale +
guides(color=plot_guide, shape=plot_guide) +
labs(x="Number of UMIs", y="Similarity stat") +
scale_x_log10()
Warning: Duplicated override.aes is ignored.
ggsave(outPath("similarity_vs_n_umis.pdf"), width=6, height=3)
Warning: Duplicated override.aes is ignored.
gg_sims <- mapply(function(df, col) plotSimilarityStat(df, y.lims=c(-12, 2.5), fill.color=col, text.angle=90, size=0.2),
cell_sim_dfs, c("#66c2a5", "#fc8d62"), SIMPLIFY=F)
p_sims_joint <- cowplot::plot_grid(plotlist=gg_sims, align="h", rel_widths=c(4, 5))
ggsave(outPath("similarities.pdf"), p_sims_joint, width=8, height=4)
p_sims_joint
perm_p_vals <- cell_num_df %>% mutate(Condition=as.factor(Condition)) %>%
split(.$Type) %>% pbsapply(function(df) {
perm.diffs <- sapply(1:50000, function(i)
split(df$Frac, sample(df$Condition)) %>% sapply(mean, trim=0.4) %>% diff() %>% abs())
obs.diff <- df %$% split(Frac, Condition) %>% sapply(mean, trim=0.4) %>% diff() %>% abs()
return(mean(obs.diff < perm.diffs))
}, cl=40)
cell_num_rank_df <- tibble(Type=names(perm_p_vals), Stat=perm_p_vals, Affected=(perm_p_vals < 0.2),
HighlyAffected=(perm_p_vals < 0.05)) %>%
mutate(Rank=setNames(Stat, Type) %>% split(neuron_type_per_type[Type]) %>% lapply(rank) %>% Reduce(c, .) %>% .[Type],
StatType="CellNumber")
stat_per_type <- cell_sim_df %>% filter(!SameCondition) %$% split(DiffStat, Type)
med_stat_per_type <- stat_per_type %>% sapply(median)
is_affected <- sapply(stat_per_type, quantile, 0.75) %>% setNames(names(stat_per_type)) < 0
is_highly_affected <- med_stat_per_type %>% split(neuron_type_per_type[names(.)]) %>%
sapply(function(x) x < median(x)) %>% Reduce(c, .)
stat_rank <- med_stat_per_type %>% split(neuron_type_per_type[names(.)]) %>%
sapply(rank) %>% Reduce(c, .)
sim_stat_rank_df <- tibble(Type=names(med_stat_per_type), Stat=med_stat_per_type, Affected=is_affected,
HighlyAffected=is_highly_affected[names(med_stat_per_type)],
Rank=stat_rank[names(med_stat_per_type)], StatType="Similarity")
cell_num_rank_df %>% rbind(sim_stat_rank_df) %>%
write_csv(OutputPath("total_ranking", "type_distance.csv"))
data.frame(value=unlist(sessioninfo::platform_info()))
value | |
---|---|
version | R version 3.5.1 (2018-07-02) |
os | Ubuntu 18.04.2 LTS |
system | x86_64, linux-gnu |
ui | X11 |
language | (EN) |
collate | en_US.UTF-8 |
ctype | en_US.UTF-8 |
tz | America/New_York |
date | 2020-07-08 |
as.data.frame(sessioninfo::package_info())[c('package', 'loadedversion', 'date', 'source')]
package | loadedversion | date | source | |
---|---|---|---|---|
AnnotationDbi | AnnotationDbi | 1.44.0 | 2018-10-30 | Bioconductor |
assertthat | assertthat | 0.2.1 | 2019-03-21 | CRAN (R 3.5.1) |
backports | backports | 1.1.5 | 2019-10-02 | CRAN (R 3.5.1) |
base64enc | base64enc | 0.1-3 | 2015-07-28 | CRAN (R 3.5.1) |
beeswarm | beeswarm | 0.2.3 | 2016-04-25 | CRAN (R 3.5.1) |
Biobase | Biobase | 2.42.0 | 2018-10-30 | Bioconductor |
BiocGenerics | BiocGenerics | 0.28.0 | 2018-10-30 | Bioconductor |
bit | bit | 1.1-15.2 | 2020-02-10 | CRAN (R 3.5.1) |
bit64 | bit64 | 0.9-7 | 2017-05-08 | CRAN (R 3.5.1) |
blob | blob | 1.2.1 | 2020-01-20 | CRAN (R 3.5.1) |
brew | brew | 1.0-6 | 2011-04-13 | CRAN (R 3.5.1) |
Cairo | Cairo | 1.5-11 | 2020-03-09 | CRAN (R 3.5.1) |
callr | callr | 3.4.2 | 2020-02-12 | CRAN (R 3.5.1) |
cli | cli | 2.0.2 | 2020-02-28 | CRAN (R 3.5.1) |
colorspace | colorspace | 1.4-1 | 2019-03-18 | CRAN (R 3.5.1) |
conos | conos | 1.3.0 | 2020-05-12 | local |
cowplot | cowplot | 1.0.0 | 2019-07-11 | CRAN (R 3.5.1) |
crayon | crayon | 1.3.4 | 2017-09-16 | CRAN (R 3.5.1) |
data.table | data.table | 1.12.8 | 2019-12-09 | CRAN (R 3.5.1) |
dataorganizer | dataorganizer | 0.1.0 | 2019-11-08 | local |
DBI | DBI | 1.1.0 | 2019-12-15 | CRAN (R 3.5.1) |
dendextend | dendextend | 1.13.4 | 2020-02-28 | CRAN (R 3.5.1) |
desc | desc | 1.2.0 | 2018-05-01 | CRAN (R 3.5.1) |
devtools | devtools | 2.2.2 | 2020-02-17 | CRAN (R 3.5.1) |
digest | digest | 0.6.25 | 2020-02-23 | CRAN (R 3.5.1) |
dplyr | dplyr | 0.8.5 | 2020-03-07 | CRAN (R 3.5.1) |
ellipsis | ellipsis | 0.3.0 | 2019-09-20 | CRAN (R 3.5.1) |
Epilepsy19 | Epilepsy19 | 0.0.0.9000 | 2019-10-15 | local |
evaluate | evaluate | 0.14 | 2019-05-28 | CRAN (R 3.5.1) |
fansi | fansi | 0.4.1 | 2020-01-08 | CRAN (R 3.5.1) |
farver | farver | 2.0.3 | 2020-01-16 | CRAN (R 3.5.1) |
fastmap | fastmap | 1.0.1 | 2019-10-08 | CRAN (R 3.5.1) |
fs | fs | 1.3.2 | 2020-03-05 | CRAN (R 3.5.1) |
ggbeeswarm | ggbeeswarm | 0.6.0 | 2018-10-16 | Github (eclarke/ggbeeswarm@fb85521) |
ggplot2 | ggplot2 | 3.3.0 | 2020-03-05 | CRAN (R 3.5.1) |
ggrastr | ggrastr | 0.1.7 | 2018-12-04 | Github (VPetukhov/ggrastr@203d5cc) |
ggrepel | ggrepel | 0.8.2 | 2020-03-08 | CRAN (R 3.5.1) |
git2r | git2r | 0.26.1 | 2019-06-29 | CRAN (R 3.5.1) |
glue | glue | 1.3.2 | 2020-03-12 | CRAN (R 3.5.1) |
gridExtra | gridExtra | 2.3 | 2017-09-09 | CRAN (R 3.5.1) |
gtable | gtable | 0.3.0 | 2019-03-25 | CRAN (R 3.5.1) |
highr | highr | 0.8 | 2019-03-20 | CRAN (R 3.5.1) |
hms | hms | 0.5.3 | 2020-01-08 | CRAN (R 3.5.1) |
htmltools | htmltools | 0.4.0 | 2019-10-04 | CRAN (R 3.5.1) |
httpuv | httpuv | 1.5.2 | 2019-09-11 | CRAN (R 3.5.1) |
igraph | igraph | 1.2.4.2 | 2019-11-27 | CRAN (R 3.5.1) |
IRanges | IRanges | 2.16.0 | 2018-10-30 | Bioconductor |
irlba | irlba | 2.3.3 | 2019-02-05 | CRAN (R 3.5.1) |
knitr | knitr | 1.28 | 2020-02-06 | CRAN (R 3.5.1) |
labeling | labeling | 0.3 | 2014-08-23 | CRAN (R 3.5.1) |
later | later | 1.0.0 | 2019-10-04 | CRAN (R 3.5.1) |
lattice | lattice | 0.20-40 | 2020-02-19 | CRAN (R 3.5.1) |
lifecycle | lifecycle | 0.2.0 | 2020-03-06 | CRAN (R 3.5.1) |
lineup | lineup | 0.37-11 | 2019-03-06 | CRAN (R 3.5.1) |
magrittr | magrittr | 1.5 | 2014-11-22 | CRAN (R 3.5.1) |
MASS | MASS | 7.3-51.5 | 2019-12-20 | CRAN (R 3.5.1) |
Matrix | Matrix | 1.2-18 | 2019-11-27 | CRAN (R 3.5.1) |
memoise | memoise | 1.1.0 | 2017-04-21 | CRAN (R 3.5.1) |
mime | mime | 0.9 | 2020-02-04 | CRAN (R 3.5.1) |
munsell | munsell | 0.5.0 | 2018-06-12 | CRAN (R 3.5.1) |
org.Hs.eg.db | org.Hs.eg.db | 3.7.0 | 2019-10-08 | Bioconductor |
pagoda2 | pagoda2 | 0.1.1 | 2019-12-10 | local |
pbapply | pbapply | 1.4-2 | 2019-08-31 | CRAN (R 3.5.1) |
pillar | pillar | 1.4.3 | 2019-12-20 | CRAN (R 3.5.1) |
pkgbuild | pkgbuild | 1.0.6 | 2019-10-09 | CRAN (R 3.5.1) |
pkgconfig | pkgconfig | 2.0.3 | 2019-09-22 | CRAN (R 3.5.1) |
pkgload | pkgload | 1.0.2 | 2018-10-29 | CRAN (R 3.5.1) |
prettyunits | prettyunits | 1.1.1 | 2020-01-24 | CRAN (R 3.5.1) |
processx | processx | 3.4.2 | 2020-02-09 | CRAN (R 3.5.1) |
promises | promises | 1.1.0 | 2019-10-04 | CRAN (R 3.5.1) |
ps | ps | 1.3.2 | 2020-02-13 | CRAN (R 3.5.1) |
purrr | purrr | 0.3.3 | 2019-10-18 | CRAN (R 3.5.1) |
R6 | R6 | 2.4.1 | 2019-11-12 | CRAN (R 3.5.1) |
RColorBrewer | RColorBrewer | 1.1-2 | 2014-12-07 | CRAN (R 3.5.1) |
Rcpp | Rcpp | 1.0.4 | 2020-03-17 | CRAN (R 3.5.1) |
readr | readr | 1.3.1 | 2018-12-21 | CRAN (R 3.5.1) |
remotes | remotes | 2.1.1 | 2020-02-15 | CRAN (R 3.5.1) |
rjson | rjson | 0.2.20 | 2018-06-08 | CRAN (R 3.5.1) |
rlang | rlang | 0.4.5 | 2020-03-01 | CRAN (R 3.5.1) |
rmarkdown | rmarkdown | 2.1 | 2020-01-20 | CRAN (R 3.5.1) |
Rook | Rook | 1.1-1 | 2014-10-20 | CRAN (R 3.5.1) |
rprojroot | rprojroot | 1.3-2 | 2018-01-03 | CRAN (R 3.5.1) |
RSQLite | RSQLite | 2.2.0 | 2020-01-07 | CRAN (R 3.5.1) |
rstudioapi | rstudioapi | 0.11 | 2020-02-07 | CRAN (R 3.5.1) |
S4Vectors | S4Vectors | 0.20.1 | 2018-11-09 | Bioconductor |
scales | scales | 1.1.0 | 2019-11-18 | CRAN (R 3.5.1) |
sccore | sccore | 0.1 | 2020-04-24 | Github (hms-dbmi/sccore@2b34b61) |
sessioninfo | sessioninfo | 1.1.1 | 2018-11-05 | CRAN (R 3.5.1) |
shiny | shiny | 1.4.0.2 | 2020-03-13 | CRAN (R 3.5.1) |
stringi | stringi | 1.4.6 | 2020-02-17 | CRAN (R 3.5.1) |
stringr | stringr | 1.4.0 | 2019-02-10 | CRAN (R 3.5.1) |
testthat | testthat | 2.3.2 | 2020-03-02 | CRAN (R 3.5.1) |
tibble | tibble | 2.1.3 | 2019-06-06 | CRAN (R 3.5.1) |
tidyselect | tidyselect | 1.0.0 | 2020-01-27 | CRAN (R 3.5.1) |
triebeard | triebeard | 0.3.0 | 2016-08-04 | CRAN (R 3.5.1) |
urltools | urltools | 1.7.3 | 2019-04-14 | CRAN (R 3.5.1) |
usethis | usethis | 1.5.1 | 2019-07-04 | CRAN (R 3.5.1) |
vctrs | vctrs | 0.2.4 | 2020-03-10 | CRAN (R 3.5.1) |
vipor | vipor | 0.4.5 | 2017-03-22 | CRAN (R 3.5.1) |
viridis | viridis | 0.5.1 | 2018-03-29 | CRAN (R 3.5.1) |
viridisLite | viridisLite | 0.3.0 | 2018-02-01 | CRAN (R 3.5.1) |
whisker | whisker | 0.4 | 2019-08-28 | CRAN (R 3.5.1) |
withr | withr | 2.1.2 | 2018-03-15 | CRAN (R 3.5.1) |
workflowr | workflowr | 1.6.1 | 2020-03-11 | CRAN (R 3.5.1) |
xfun | xfun | 0.12 | 2020-01-13 | CRAN (R 3.5.1) |
xtable | xtable | 1.8-4 | 2019-04-21 | CRAN (R 3.5.1) |
yaml | yaml | 2.2.1 | 2020-02-01 | CRAN (R 3.5.1) |