Last updated: 2020-07-08

Checks: 7 0

Knit directory: Epilepsy19/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200706) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 856ddcf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/fig_go.nb.html
    Ignored:    analysis/fig_neun.nb.html
    Ignored:    analysis/fig_overview.nb.html
    Ignored:    analysis/fig_smart_seq.nb.html
    Ignored:    analysis/fig_summary.nb.html
    Ignored:    analysis/fig_type_distance.nb.html
    Ignored:    analysis/gene_testing.nb.html
    Ignored:    analysis/prep_alignment.nb.html
    Ignored:    cache/con_allen.rds
    Ignored:    cache/con_filt_cells.rds
    Ignored:    cache/con_filt_samples.rds
    Ignored:    cache/con_ss.rds
    Ignored:    cache/count_matrices.rds
    Ignored:    cache/p2s/
    Ignored:    output/

Untracked files:
    Untracked:  DESCRIPTION
    Untracked:  NAMESPACE
    Untracked:  R/
    Untracked:  analysis/prep_alignment.Rmd
    Untracked:  analysis/prep_filtration.Rmd
    Untracked:  code/
    Untracked:  gene_modules/
    Untracked:  man/
    Untracked:  metadata/

Unstaged changes:
    Modified:   Epilepsy19.Rproj
    Modified:   README.md
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fig_smart_seq.Rmd) and HTML (docs/fig_smart_seq.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5c8e634 viktor_petukhov 2020-07-08 Fixed dates in fig_ notebooks
Rmd 10f9bdc viktor_petukhov 2020-07-07 Smart-seq notebook

library(pagoda2)
library(conos)
library(magrittr)
library(ggplot2)
library(pbapply)
library(tidyverse)
library(cowplot)
library(readr)
library(scrattch.io)
library(ggalluvial)

devtools::load_all()
theme_set(theme_bw())

outPath <- function(...) OutputPath("fig_smart_seq", ...)
allenDataPath <- function(...) file.path("~/mh/Data/allen_human_cortex/", ...)

Load data

con <- CachePath("con_filt_cells.rds") %>% read_rds()

sample_per_cell <- con$getDatasetPerCell()

annotation_by_level <- read_csv(MetadataPath("annotation.csv"))
annotation <- annotation_by_level %$% setNames(l4, cell) %>% .[names(sample_per_cell)] %>% 
  .[. != "Excluded"]

neuron_type_per_type <- ifelse(grepl("L[2-6].+", unique(annotation)), "Excitatory", "Inhibitory") %>% 
  setNames(unique(annotation))
type_order <- names(neuron_type_per_type)[order(neuron_type_per_type, names(neuron_type_per_type))]

Alignment to our Smart-Seq dataset

so <- readRDS("/d0-mendel/home/demharters/R/projects/UPF9_14_17_19_22_23_24_32_33/seurat_upf.rds")
annot_old <- so@meta.data %$% setNames(subtypesKU, rownames(.))
cm_ss <- so@raw.data
dim(cm_ss)
[1] 30632   955
median(Matrix::colSums(cm_ss))
[1] 1796751
median(Matrix::colSums(cm_ss > 0))
[1] 10302
dim(cm_ss)
[1] 30632   955
Matrix::colSums(cm_ss > 0) %>% qplot(xlab="#Genes", ylab="#Cells")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Matrix::colSums(cm_ss) %>% log10() %>% qplot()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

p2_ss <- GetPagoda(cm_ss)
955 cells, 30632 genes; normalizing ... using plain model winsorizing ... log scale ... done.
calculating variance fit ... using gam 5012 overdispersed genes ... 5012persisting ... done.
running PCA using 1000 OD genes .... done
calculating distance ... pearson ...running tSNE using 30 cores:
con_ss <- Conos$new(c(con$samples, list(SS2=p2_ss)), n.cores=40)
con_ss$buildGraph(verbose=T, var.scale=T, k=15, k.self=5, k.self.weight=0.1)
found 0 out of 190 cached PCA  space pairs ... running 190 additional PCA  space pairs  done
inter-sample links using  mNN   done
local pairs local pairs  done
building graph ..done
con_ss$findCommunities(method=conos::leiden.community, resolution=10)
con_ss$embedGraph(method="UMAP", spread=1.5, min.dist=1, verbose=T, n.cores=30, min.prob.lower=1e-5)
Convert graph to adjacency list...
Done
Estimate nearest neighbors and commute times...
Estimating hitting distances: 05:50:41.
Done.
Estimating commute distances: 05:50:52.
Hashing adjacency list: 05:50:52.
Done.
Estimating distances: 05:51:23.
Done
Done.
All done!: 05:51:47.
Done
Estimate UMAP embedding...
05:51:48 UMAP embedding parameters a = 0.1034 b = 1.524
05:51:48 Read 102937 rows and found 1 numeric columns
05:51:50 Commencing smooth kNN distance calibration using 30 threads
05:51:56 Initializing from normalized Laplacian + noise
05:52:22 Commencing optimization for 1000 epochs, with 3928774 positive edges using 30 threads
05:52:58 Optimization finished
Done
write_rds(con_ss, CachePath("con_ss.rds"))

con_ss <- CachePath("con_ss.rds") %>% read_rds()
annot_ss_new <- con_ss$propagateLabels(annotation, max.iters=50, verbose=T) %$%
  labels[rownames(con_ss$samples$SS2$counts)]

tibble(Cell=names(annot_ss_new), Type=annot_ss_new) %>% 
  write_csv(MetadataPath("annotation_smart_seq.csv"))
p_all <- con_ss$plotGraph(alpha=0.2, size=0.05, mark.groups=T, show.legend=F, groups=c(annotation, annot_ss_new), 
                          raster=T, raster.dpi=150, font.size=4, shuffle.colors=T, show.labels=T, plot.na=F) + 
  theme(panel.grid=element_blank()) + labs(x="UMAP 1", y="UMAP 2")

p_emb <- con_ss$plotGraph(alpha=0.2, size=0.05, mark.groups=T, show.legend=F, groups=annot_ss_new, 
                          raster=T, raster.dpi=150, font.size=4, show.labels=T) + 
  theme(panel.grid=element_blank()) + labs(x="UMAP 1", y="UMAP 2")

p_emb$layers[[3]]$aes_params$alpha <- 0.01
p_emb$layers[[1]]$aes_params$alpha <- 1
p_emb$layers[[2]] <- p_all$layers[[2]]
p_emb$layers <- p_emb$layers[c(3, 1, 2)]

p_emb$scales$scales[[2]] <- p_all$scales$scales[[2]]

# ggsave(outPath("ss_all.pdf"), p_all)
# ggsave(outPath("ss_subset.pdf"), p_emb)

p_all

p_emb

num_df <- table(Type=annot_ss_new) %>% as_tibble() %>% 
  mutate(Frac = n / sum(n), NeuronType=neuron_type_per_type[Type]) %>% 
  mutate(Type = factor(Type, levels=type_order))
ggplot(num_df) +
    geom_bar(aes(x=Type, y=Frac * 100, fill=NeuronType), stat="identity") +
    scale_y_continuous(expand=expansion(c(0, 0.05))) +
    scale_fill_brewer("", palette="Set2") +
    labs(x="", y="% of cells") +
    theme(legend.position=c(1, 1.1), legend.justification=c(1, 1), panel.grid.major.x=element_blank(),
          axis.text.x=element_text(angle=90, hjust=1, vjust=0.5), legend.background=element_blank())

ggsave(outPath("ss_type_frac.pdf"))

Annotation to Allen data

sample_info <- allenDataPath("sample_annotations.csv") %>% read_csv()

annot_allen <- sample_info %$% list(
  l0=setNames(as.character(class_label), sample_name),
  l1=setNames(as.character(subclass_label), sample_name),
  l3=setNames(as.character(cluster_label), sample_name)
)
annot_allen$l2 <- strsplit(annot_allen$l3, " ") %>% sapply(function(x) paste(x[1:(length(x)-1)], collapse=" "))
tome <- allenDataPath("transcrip.tome")
cm_allen <- read_tome_dgCMatrix(tome, "data/t_exon") %>%
  set_colnames(read_tome_sample_names(tome)) %>% set_rownames(read_tome_gene_names(tome)) %>%
  .[, !(annot_allen$l0[colnames(.)] %in% c("Exclude", "Non-neuronal"))]

dataset_id <- sample_info %$% setNames(external_donor_name_label, sample_name)
cms_per_dataset <- colnames(cm_allen) %>% split(dataset_id[.]) %>% lapply(function(ns) cm_allen[,ns])

p2s_allen <- lapply(cms_per_dataset, basicP2proc, n.cores=30, k=15,
                    get.largevis=F, make.geneknn=F, get.tsne=F)
16248 cells, 50281 genes; normalizing ... using plain model winsorizing ... log scale ... done.
calculating variance fit ... using gam 13623 overdispersed genes ... 13623persisting ... done.
running PCA using 3000 OD genes .... done
9491 cells, 50281 genes; normalizing ... using plain model winsorizing ... log scale ... done.
calculating variance fit ... using gam 9971 overdispersed genes ... 9971persisting ... done.
running PCA using 3000 OD genes .... done
17013 cells, 50281 genes; normalizing ... using plain model winsorizing ... log scale ... done.
calculating variance fit ... using gam 14063 overdispersed genes ... 14063persisting ... done.
running PCA using 3000 OD genes .... done
con_allen <- con$samples[c("C6", "C7", "C8")] %>% c(p2s_allen) %>% Conos$new(n.cores=30)
source_fac <- names(con_allen$samples) %>% setNames(., .) %>% substr(1, 1)

con_allen$buildGraph(verbose=T, var.scale=T, k=20, k.self=5, k.self.weight=0.1, space="CCA",
                     same.factor.downweight=0.1, balancing.factor.per.sample=source_fac)
found 0 out of 15 cached CCA  space pairs ... running 15 additional CCA  space pairs  done
inter-sample links using  mNN   done
local pairs local pairs  done
building graph ..done
balancing edge weights done
con_allen$embedGraph(method="UMAP", spread=1, min.dist=0.5, verbose=T, n.cores=30, min.prob.lower=1e-7)
Convert graph to adjacency list...
Done
Estimate nearest neighbors and commute times...
Estimating hitting distances: 06:11:43.
Done.
Estimating commute distances: 06:11:50.
Hashing adjacency list: 06:11:50.
Done.
Estimating distances: 06:11:51.
Done
Done.
All done!: 06:12:02.
Done
Estimate UMAP embedding...
Done
write_rds(con_allen, CachePath("con_allen.rds"))

con_allen <- CachePath("con_allen.rds") %>% read_rds()
con_allen$plotGraph(color.by='sample', size=0.1, alpha=0.1, mark.groups=F, show.legend=T, 
                    legend.pos=c(1, 1), raster=T, raster.dpi=150) + 
  theme(legend.title=element_blank())

ggsave(outPath("allen_alignment_sample.pdf"))

con_allen$plotGraph(groups=annot_allen$l2, size=0.1, font.size=c(2, 3), alpha=0.1,
                    raster=T, raster.dpi=150)

ggsave(outPath("allen_alignment_allen.pdf"))

con_allen$plotGraph(groups=annotation, size=0.1, font.size=c(2, 3), alpha=0.1,
                    raster=T, raster.dpi=150)

ggsave(outPath("allen_alignment_ours.pdf"))
labels_prop <- con_allen$propagateLabels(annot_allen$l3, max.iters=50, verbose=T)
con_allen$plotGraph(groups=labels_prop$labels, size=0.1, font.size=c(2, 3), alpha=0.1)

type_ranks <- factor(type_order, levels=type_order) %>% as.integer() %>% setNames(type_order)
t_ann <- annotation %>% .[intersect(names(.), names(con_allen$getDatasetPerCell()))]

freq_df <- table(KU=t_ann, Allen=labels_prop$labels[names(t_ann)]) %>% as_tibble() %>% 
  group_by(KU) %>% mutate(total_n=sum(n), freq=n / total_n) %>% ungroup() %>% filter(n > 1, freq > 0.05) %>% 
  mutate(NeuronType=neuron_type_per_type[KU])

allen_type_order <- freq_df %>% split(.$Allen) %>% lapply(function(x) x %$% setNames(n, KU) %>% `/`(sum(.))) %>% 
  sapply(function(ws) as.numeric(type_ranks[names(ws)[which.max(ws)]]) + sum(type_ranks[names(ws)] * ws) / 10) %>% sort() %>% names()

freq_df %<>% mutate(KU=factor(KU, levels=type_order), Allen=factor(Allen, levels=allen_type_order))
plotAlluvium <- function(p.df, min.box.h, width.left, width.right, alpha=1.0, ...) {
  s.ku <- p.df %$% split(n, droplevels(KU)) %>% sapply(sum)
  s.allen <- p.df %$% split(n, droplevels(Allen)) %>% sapply(sum)
  s.total <- c(rev(s.ku), rev(s.allen)) %>% sqrt() %>% sqrt() %>% `/`(max(.))

  palette <- sccore::fac2col(p.df$KU, return.details=T, ...) %$%
    setNames(sample(palette), names(palette)) %>% alpha(alpha=alpha)
  
  ggplot(p.df, aes(axis1=KU, axis2=Allen, y=pmax(sqrt(n), min.box.h))) +
    geom_alluvium(aes(fill=KU)) +
    geom_stratum(width=c(rep(width.left, length(s.ku)), rep(width.right, length(s.allen)))) + 
    geom_text(stat="stratum", infer.label=TRUE, size=s.total * 2 + 1) +
    scale_x_continuous(expand=c(0, 0)) +
    scale_y_continuous(expand=c(0, 0)) +
    theme_void() + theme(legend.position="none") +
    scale_fill_manual(values=palette)
}
filter(freq_df, NeuronType == "Excitatory") %>% plotAlluvium(10, 0.3, 0.5, v=0.7, s=1.0)

ggsave(outPath("allen_mapping_ex.pdf"))
filter(freq_df, NeuronType == "Inhibitory") %>% 
  plotAlluvium(2, 0.25, 0.4, v=0.8, s=1.0)

ggsave(outPath("allen_mapping_inh.pdf"))

data.frame(value=unlist(sessioninfo::platform_info()))
value
version R version 3.5.1 (2018-07-02)
os Ubuntu 18.04.2 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2020-07-08
as.data.frame(sessioninfo::package_info())[c('package', 'loadedversion', 'date', 'source')]
package loadedversion date source
AnnotationDbi AnnotationDbi 1.44.0 2018-10-30 Bioconductor
assertthat assertthat 0.2.1 2019-03-21 CRAN (R 3.5.1)
backports backports 1.1.5 2019-10-02 CRAN (R 3.5.1)
base64enc base64enc 0.1-3 2015-07-28 CRAN (R 3.5.1)
beeswarm beeswarm 0.2.3 2016-04-25 CRAN (R 3.5.1)
Biobase Biobase 2.42.0 2018-10-30 Bioconductor
BiocGenerics BiocGenerics 0.28.0 2018-10-30 Bioconductor
bit bit 1.1-15.2 2020-02-10 CRAN (R 3.5.1)
bit64 bit64 0.9-7 2017-05-08 CRAN (R 3.5.1)
blob blob 1.2.1 2020-01-20 CRAN (R 3.5.1)
brew brew 1.0-6 2011-04-13 CRAN (R 3.5.1)
broom broom 0.5.5 2020-02-29 CRAN (R 3.5.1)
Cairo Cairo 1.5-11 2020-03-09 CRAN (R 3.5.1)
callr callr 3.4.2 2020-02-12 CRAN (R 3.5.1)
cellranger cellranger 1.1.0 2016-07-27 CRAN (R 3.5.1)
cli cli 2.0.2 2020-02-28 CRAN (R 3.5.1)
colorspace colorspace 1.4-1 2019-03-18 CRAN (R 3.5.1)
conos conos 1.3.0 2020-05-12 local
cowplot cowplot 1.0.0 2019-07-11 CRAN (R 3.5.1)
crayon crayon 1.3.4 2017-09-16 CRAN (R 3.5.1)
data.table data.table 1.12.8 2019-12-09 CRAN (R 3.5.1)
dataorganizer dataorganizer 0.1.0 2019-11-08 local
DBI DBI 1.1.0 2019-12-15 CRAN (R 3.5.1)
dbplyr dbplyr 1.4.2 2019-06-17 CRAN (R 3.5.1)
dendextend dendextend 1.13.4 2020-02-28 CRAN (R 3.5.1)
desc desc 1.2.0 2018-05-01 CRAN (R 3.5.1)
devtools devtools 2.2.2 2020-02-17 CRAN (R 3.5.1)
digest digest 0.6.25 2020-02-23 CRAN (R 3.5.1)
dplyr dplyr 0.8.5 2020-03-07 CRAN (R 3.5.1)
ellipsis ellipsis 0.3.0 2019-09-20 CRAN (R 3.5.1)
Epilepsy19 Epilepsy19 0.0.0.9000 2019-10-15 local
evaluate evaluate 0.14 2019-05-28 CRAN (R 3.5.1)
fansi fansi 0.4.1 2020-01-08 CRAN (R 3.5.1)
farver farver 2.0.3 2020-01-16 CRAN (R 3.5.1)
fastmap fastmap 1.0.1 2019-10-08 CRAN (R 3.5.1)
forcats forcats 0.5.0 2020-03-01 CRAN (R 3.5.1)
fs fs 1.3.2 2020-03-05 CRAN (R 3.5.1)
generics generics 0.0.2 2018-11-29 CRAN (R 3.5.1)
ggalluvial ggalluvial 0.11.1 2019-12-03 CRAN (R 3.5.1)
ggbeeswarm ggbeeswarm 0.6.0 2018-10-16 Github ()
ggplot2 ggplot2 3.3.0 2020-03-05 CRAN (R 3.5.1)
ggrastr ggrastr 0.1.7 2018-12-04 Github ()
ggrepel ggrepel 0.8.2 2020-03-08 CRAN (R 3.5.1)
git2r git2r 0.26.1 2019-06-29 CRAN (R 3.5.1)
glue glue 1.3.2 2020-03-12 CRAN (R 3.5.1)
gridExtra gridExtra 2.3 2017-09-09 CRAN (R 3.5.1)
gtable gtable 0.3.0 2019-03-25 CRAN (R 3.5.1)
haven haven 2.2.0 2019-11-08 CRAN (R 3.5.1)
highr highr 0.8 2019-03-20 CRAN (R 3.5.1)
hms hms 0.5.3 2020-01-08 CRAN (R 3.5.1)
htmltools htmltools 0.4.0 2019-10-04 CRAN (R 3.5.1)
httpuv httpuv 1.5.2 2019-09-11 CRAN (R 3.5.1)
httr httr 1.4.1 2019-08-05 CRAN (R 3.5.1)
igraph igraph 1.2.4.2 2019-11-27 CRAN (R 3.5.1)
IRanges IRanges 2.16.0 2018-10-30 Bioconductor
irlba irlba 2.3.3 2019-02-05 CRAN (R 3.5.1)
jsonlite jsonlite 1.6.1 2020-02-02 CRAN (R 3.5.1)
knitr knitr 1.28 2020-02-06 CRAN (R 3.5.1)
labeling labeling 0.3 2014-08-23 CRAN (R 3.5.1)
later later 1.0.0 2019-10-04 CRAN (R 3.5.1)
lattice lattice 0.20-40 2020-02-19 CRAN (R 3.5.1)
lazyeval lazyeval 0.2.2 2019-03-15 CRAN (R 3.5.1)
lifecycle lifecycle 0.2.0 2020-03-06 CRAN (R 3.5.1)
lubridate lubridate 1.7.4 2018-04-11 CRAN (R 3.5.1)
magrittr magrittr 1.5 2014-11-22 CRAN (R 3.5.1)
MASS MASS 7.3-51.5 2019-12-20 CRAN (R 3.5.1)
Matrix Matrix 1.2-18 2019-11-27 CRAN (R 3.5.1)
memoise memoise 1.1.0 2017-04-21 CRAN (R 3.5.1)
mgcv mgcv 1.8-31 2019-11-09 CRAN (R 3.5.1)
mime mime 0.9 2020-02-04 CRAN (R 3.5.1)
modelr modelr 0.1.6 2020-02-22 CRAN (R 3.5.1)
munsell munsell 0.5.0 2018-06-12 CRAN (R 3.5.1)
nlme nlme 3.1-145 2020-03-04 CRAN (R 3.5.1)
org.Hs.eg.db org.Hs.eg.db 3.7.0 2019-10-08 Bioconductor
pagoda2 pagoda2 0.1.1 2019-12-10 local
pbapply pbapply 1.4-2 2019-08-31 CRAN (R 3.5.1)
pillar pillar 1.4.3 2019-12-20 CRAN (R 3.5.1)
pkgbuild pkgbuild 1.0.6 2019-10-09 CRAN (R 3.5.1)
pkgconfig pkgconfig 2.0.3 2019-09-22 CRAN (R 3.5.1)
pkgload pkgload 1.0.2 2018-10-29 CRAN (R 3.5.1)
plyr plyr 1.8.6 2020-03-03 CRAN (R 3.5.1)
prettyunits prettyunits 1.1.1 2020-01-24 CRAN (R 3.5.1)
processx processx 3.4.2 2020-02-09 CRAN (R 3.5.1)
promises promises 1.1.0 2019-10-04 CRAN (R 3.5.1)
ps ps 1.3.2 2020-02-13 CRAN (R 3.5.1)
purrr purrr 0.3.3 2019-10-18 CRAN (R 3.5.1)
R6 R6 2.4.1 2019-11-12 CRAN (R 3.5.1)
RColorBrewer RColorBrewer 1.1-2 2014-12-07 CRAN (R 3.5.1)
Rcpp Rcpp 1.0.4 2020-03-17 CRAN (R 3.5.1)
readr readr 1.3.1 2018-12-21 CRAN (R 3.5.1)
readxl readxl 1.3.1 2019-03-13 CRAN (R 3.5.1)
remotes remotes 2.1.1 2020-02-15 CRAN (R 3.5.1)
reprex reprex 0.3.0 2019-05-16 CRAN (R 3.5.1)
rhdf5 rhdf5 2.26.2 2019-01-02 Bioconductor
Rhdf5lib Rhdf5lib 1.4.3 2019-03-25 Bioconductor
rjson rjson 0.2.20 2018-06-08 CRAN (R 3.5.1)
rlang rlang 0.4.5 2020-03-01 CRAN (R 3.5.1)
rmarkdown rmarkdown 2.1 2020-01-20 CRAN (R 3.5.1)
Rook Rook 1.1-1 2014-10-20 CRAN (R 3.5.1)
rprojroot rprojroot 1.3-2 2018-01-03 CRAN (R 3.5.1)
RSpectra RSpectra 0.16-0 2019-12-01 CRAN (R 3.5.1)
RSQLite RSQLite 2.2.0 2020-01-07 CRAN (R 3.5.1)
rstudioapi rstudioapi 0.11 2020-02-07 CRAN (R 3.5.1)
Rtsne Rtsne 0.15 2018-11-10 CRAN (R 3.5.1)
rvest rvest 0.3.5 2019-11-08 CRAN (R 3.5.1)
S4Vectors S4Vectors 0.20.1 2018-11-09 Bioconductor
scales scales 1.1.0 2019-11-18 CRAN (R 3.5.1)
sccore sccore 0.1 2020-04-24 Github ()
scrattch.io scrattch.io 0.1.0 2019-10-16 Github ()
sessioninfo sessioninfo 1.1.1 2018-11-05 CRAN (R 3.5.1)
shiny shiny 1.4.0.2 2020-03-13 CRAN (R 3.5.1)
stringi stringi 1.4.6 2020-02-17 CRAN (R 3.5.1)
stringr stringr 1.4.0 2019-02-10 CRAN (R 3.5.1)
testthat testthat 2.3.2 2020-03-02 CRAN (R 3.5.1)
tibble tibble 2.1.3 2019-06-06 CRAN (R 3.5.1)
tidyr tidyr 1.0.2 2020-01-24 CRAN (R 3.5.1)
tidyselect tidyselect 1.0.0 2020-01-27 CRAN (R 3.5.1)
tidyverse tidyverse 1.3.0 2019-11-21 CRAN (R 3.5.1)
triebeard triebeard 0.3.0 2016-08-04 CRAN (R 3.5.1)
urltools urltools 1.7.3 2019-04-14 CRAN (R 3.5.1)
usethis usethis 1.5.1 2019-07-04 CRAN (R 3.5.1)
uwot uwot 0.1.8 2020-03-16 CRAN (R 3.5.1)
vctrs vctrs 0.2.4 2020-03-10 CRAN (R 3.5.1)
vipor vipor 0.4.5 2017-03-22 CRAN (R 3.5.1)
viridis viridis 0.5.1 2018-03-29 CRAN (R 3.5.1)
viridisLite viridisLite 0.3.0 2018-02-01 CRAN (R 3.5.1)
whisker whisker 0.4 2019-08-28 CRAN (R 3.5.1)
withr withr 2.1.2 2018-03-15 CRAN (R 3.5.1)
workflowr workflowr 1.6.1 2020-03-11 CRAN (R 3.5.1)
xfun xfun 0.12 2020-01-13 CRAN (R 3.5.1)
xml2 xml2 1.2.5 2020-03-11 CRAN (R 3.5.1)
xtable xtable 1.8-4 2019-04-21 CRAN (R 3.5.1)
yaml yaml 2.2.1 2020-02-01 CRAN (R 3.5.1)